An Example 8051 Microprocessor Program

Here is an example of what a program for the 8051 microprocessor looks like. This particular program employs the serial port on the 8051 microprocessor which is an input/output device exactly like the serial port on a PC. Every time the human operator types a character on the PC's keyboard, the 8051 simulator places the corresponding ASCII byte in the 8051 microprocessor's serial port register SBUF. And each time a byte is received over the serial port, an 8051 hardware interrupt occurs, causing execution to branch to a predefined interrupt service vector. In this example program, we have chosen to place assembly code at this interrupt service vector that causes the keyboard letter to be displayed (scrolled) onto 8 consecutive columns of the electronic sign board. This particular program consists of only 42 statements and its operation is fully explained in the on-line Help documentation.

; This program paints on the signboard whatever characters the operator

; types on the computer's keyboard. The 8051 simulator creates a

; "serial port interrupt" each time the operator types an alphabetic

; character. Serial port interrupts are 1 of the 5 types of interrupts

; that an 8051 microprocessor can respond to. Once you have written

; to the IE ("interrupt enable") register, the response to an interrupt

; is automatic and occurs asynchronously to whatever other activity

; the 8051 program is involved in. The response to an interrupt is

; exactly as if the program had performed an LCALL instruction. That

; is, program execution jumps off to an interrupt service routine that

; you have placed at a predefined location in program memory. When

; Intel designed the 8051 the locations for these 5 interrupt service

; routines was permanently fixed. The serial port interrupt that

; this program employs begins at program memory address 0x23. When

; we reach the RETI instruction at the end of the interrupt service

; routine, the 8051 goes back to doing whatever it had been doing

; before it was interrupted.

 ORG 0x00 ; this statement is not really necessary as it

 ; is the default behavior of the assembler

 LJMP Start ; jump over the prog mem locations reserved for ISVs

 ; (interrupt service vectors) and jump over

 ; the non-executable DB statements brought in

 ; by the inclusion of the FontData.txt file.

 ORG 0x03 ; the ISV for the EXT 0 interrupt is 0x0003

EXT0INT: LJMP Int0Isr

 ORG 0x0B ; the ISV for the TMR 0 interrupt is 0x000B

TMR0INT: LJMP Tmr0Isr

 ORG 0x13 ; the ISV for the EXT 1 interrupt is 0x0013

EXT1INT: LJMP Int1Isr

 ORG 0x1B ; the ISV for the TMR 1 interrupt is 0x001B

TMR1INT: LJMP Tmr1Isr

 ORG 0x23 ; the ISV for the Serial Port interrupt is 0x0023

SERINT: LJMP SerIsr

INCLUDE "FontData.txt"

 ORG 0x100 ; the interrupt service vectors consume program memory

 ; locations 0x03 thru 0x25 = 37 and the DB statements

 ; in FontData.txt consume another 27*8 = 216 bytes

 ; (remember there is a space character after Z).

 ; Hence this program memory address of 0x100 = 256 is

 ; safely past these items.

Start: MOV DPTR,#StartOfImageData

 ; We initialize the DPTR ("data pointer"), a 16 bit

 ; SFR ("special function register"), to point to

 ; the first column of font data (the first column

 ; of the letter 'A') in program memory. The DPTR

 ; register continues to hold this same value

 ; throughout this program.

 MOV SCON,#0x10 ; assert REN so the serial port is enabled to receive

 MOV IE,#0x90 ; 10010000B, MSBit is the global intr enable,

 ; the other bit we raise is ES, the serial

 ; port interrupt enable

 MOV A, #0x01 ; we walk this 1 bit across the signboard while

 ; waiting for an interrupt

Loop: RL A ; loop while waiting for an interrupt

 MOV P0,A

 SJMP Loop

; If we somehow land in any of the interrupt service routines that this

; program is not prepared to handle we just initiate an infinite loop

; so we can detect the mistake.

Int0Isr: ; interrupt service routine for EXT 0 interrupt

 SJMP Int0Isr

Int1Isr: ; interrupt service routine for EXT 1 interrupt

 SJMP Int1Isr

Tmr0Isr: ; interrupt service routine for TMR 0 interrupt

 SJMP Tmr0Isr

Tmr1Isr: ; interrupt service routine for TMR 1 interrupt

 SJMP Tmr1Isr

SerIsr: ; interrupt service routine for the serial port

 ; interrupt

 PUSH ACC ; protect the prior value in the ACC since the

 ; interrupt service routine needs to use it

 MOV A,SBUF ; read alphabet index from serial buffer SFR

 LCALL Draw1Char

 POP ACC ; restore the prior value of the ACC

 MOV SCON,#0x10 ; clear the RI bit in SCON (leave REN asserted)

 RETI

Draw1Char:

; This is a subroutine which is responsible for outputting exactly 8

; columns (hence 1 character) of font data to the electric sign board.

; Before you call this subroutine initialize the ACC with the index

; of the desired character. That is, if you want the letter 'C'

; output to the sign board then call this subroutine with ACC = 2.

; We first need to convert the letter index (ranging from 0 to 26)

; to a column index (ranging from 0 to 208). This column index

; will describe the byte offset to that letter's column data.

 ; the ACC presently holds an alphabet index

 MOV B,#8 ; each letter has 8 columns

 MUL AB ; This computes the byte offset beyond

 ; StartOfImageData where the letter starts. This

 ; product is guaranteed to be < 256 since the

 ; entire alphabet only has 216 (27*8) columns

 ; (remember there is a space char after Z),

 ; hence we only need to keep (deal with) the

 ; LSByte of the product. The LSByte is found

 ; in the ACC following the "MUL AB" instr.

; Within this subroutine we use R0 as a temporary storage location

; for the accumulator's value (we need this because the "MOVC A,@A+DPTR"

; instruction keeps perturbing the accumulator). And we use the

; R1 register to control the loop (that is, decide how many times

; we iterate). Note that R0 is synonymous with data memory location 0

; and R1 is synonymous with data memory location 1 (at least while the

; 8051 is in its default configuration).

 MOV R0,A ; preserve this starting column # since the

 ; upcoming "MOVC A,@A+DPTR" instruction

 ; replaces the value in the ACC

 MOV R1,#0 ; we use R1 to control the looping

CharLoop: MOV A,R0 ; prepare for upcoming "MOVC A,@A+DPTR" instruction

 MOVC A,@A+DPTR ; the ACC now holds one column of font data

 MOV P0,A ; write that column to the sign board

 INC R0 ; advance to the next column

 INC R1 ; increment the loop counter

 CJNE R1,#8,CharLoop

 ; we loop 8 times in order to output 8 columns

 RET

