http://www.uclab.org

ARM
ARM
2004.2.21

m ARM
m ARM
m ARM

ECLK

ARM7TDMI

Scan
Centrol Signals

Intarface

Mamony
Managemant

= Interface

Intarface

LOAD/STORE

ARM

21 3] M 2B T

24 33 33 ¥ 20

B2 1T 1B 1514 13 12 7 1D B

cord oo 1] opcode [= RN R Oparand 2 [ata Pocessing f

PSR Transfar

cord |o]o|ofofa]oals Rd T3] Rs NEEE Rrm Multply

cord |o[ofofol1]ufals] mam Rl Rl NEEE RIm Mutnply Long

cord |o[o|of1]o]efe]o RN Rd ofofafel1falals Rrm single Da'a Swap

Cond u:--:--:-1|:-|:-1|:-1|1|1|11|1|1|1 1[A1[1[1[efola]s Rn Eranch angExchangs

cord |ofofolPlufolw{L RN Rd olofalel1={H]4 Rrm Halfward Data Transter,
regisieraffser

cord |ofofolP[u]1]w{L RN Rd ofsat [1[s[H[1] onset | HamwargDats Transer
mmegdere afsef

cord |o[1]1[P[u]e]wL RN Rdl Cillset single D2 Transfer

cormd o] |1| Ungennes

comnd |1 [o]o]F U|3.|'.f-1L| [T Reqkler List Binck Data Transfar

cormd |1]o]1]L Ozl granch

cord |1 [1]o[P[u]r]w]L RN CRd cPa CifTsal Coprogessar Daa
TEnstar

comd [1[1]1]o] cPope =Rn CRd cPE cP o] crRm Coprocessar Daa
Oparaton

cord [1[1]1]o]or opd L] cRn R cPE cP [1] crm Coprogessar Regisfer
Tnsfar

card |1 |1]1]1 Igrered by piocessor Soffware inferupr

S W B SMPRE2AHMEI2ITIEE4131 2110 8 8 T B 5§ 4 3 2 1
Mn=monic Instru cticn Action

ADC
AabDD
AMD
B
BIC
BL
B

—DP
L ARV
CMP
ECR

LOC

Sdd wiath carry

Audd

AMD

Bramch

Bit Clear

Brareh with Link
Branch and Exchangs

Coprocssor Data Procsssing
Compars Megative
Compare

Exdusive OR

Load coprocessor from
ME My

Rd = Rn + Op2 + Carry
Fd := Rn + Op2

Fd = Rn ARDO SpZ2

15 := addre=ss

Rd = Rn ARD NOT Op2
R14 :=R15, R15 :

address

R1& = Rn,
T bit := Rn[d]

[Coprocaessor-spescific)
CPSR flags ;= Rn + Op2
CPSR flags := Rn - SpZ

Rd = {Rn ARD NOT Op2)
OR {op2 AMND MNOT Rnj

Coprocessor load

LOM Load rmultiple registers Stack mani pulation {Pop)
LOR Lead register frorm memory Rd :={addrass)
KMCR Klows CPL reg's_l:er b cRn = rRn {<op=cRm}
Coprocsssor register
KILA Kulti ply Azcumulats Rd :={Rm* Rsj + Rn
8 [ty Wuowe register or constant Rd : = Cp2
KR Klowe from coprocsssor Fni:= cRn {=op=zRrm}
register bo CPLU register
KRS I'-'I-:-:.-'e F5R statusfMags to Fn:=P5R
register
KSR Kowe register to PSR PSR :=FRm
statusflacs
KL Fultiply Fd:=FRm* Rs
S P Kows negative recister Rd := dxFFFFFFFF EOR Op2
CRR OR Rd :=Rn OR Op2
Mremonic | Instruction Action
RSB Reverse Subiract Rd = COp2- Rn
RSC Reverss Subtract with Carry | Rd = Op2- RBn- 1+ Carry
SBC Subtract with Carry Rd = Rn - Op2 -1 + Carry
BTC Store coprocessor registerto | address .= CRn
mamary
5TM Shore Multiple Stack manipulation (Fush)
5TR Store register to memory =address= = Rd
sUB Subtract Rd = Bn - Op2
SWI Softerare Interrupt 05 eall
SWP Swrap register with memory Rd = [Rn), [Rn] := Rm
TEQ Tast bitwise equality CPER flags = Rn BEOR Op2
TST Tast bits CPSR flags = Rn AND Op2

ARM

31 28 27 2524 2120 19 1615 1211 8 7 0

cond 001 [opcode | s| Rn Rd Shifter_operand

Opcode:

Cond:

S: CPSR
Rd:

Rn:

Shifter_operand:

<opcode> {<cond>}S}<Rd>,<Rn>,<shifter_operand>

ARM

0000 = EQ - Z set (equal)

0001 =NE - Z clear (not equal)

0010 = CS- C set (unsigned higher or same)

0011 =CC - C clear (unsigned lower)

0100=MI - N set (negative)

0101=PL - N clear (positive or zero)

0110 =VS-V st (overflow)

0111=VC -V clear (no overflow)

1000=HI - C set and Z clear (unsigned higher)

1001 =L S- C clear or Z set (unsigned lower or same)

1010=GE - N set and V set, or N clear and V clear (greater or equal)
1011=LT-Nsetand V clear, or N clear and V set (lessthan)

1100 =GT - Z clear, and either N set and V set, or N clear and V clear (greater than)
1101=LE - Z set, or N set and V clear, or N clear and V set (lessthan or equal)
1110=AL - always

1111 =NV - never

ARM

{
<Oprnd2>
{f1
S
B
H
T

<a_model>
<a_mode2>
<a mode3>
<a moded>
<a mode5>
<a_mode6>

#32 Bit Immed

Refer to Table Condition Field {cond}
Refer to Table Oprnd2
Refer to Table Field
Sets condition codes (optional)
Byte operation (optional)
Halfword operation (optional)

Forces address translation. Cannot be used
Refer to Table Addressing Mode 1

Refer to Table Addressing Mode 2

Refer to Table Addressing Mode 3

Refer to Table Addressing Mode 4

Refer to Table Addressing Mode 5

Refer to Table Addressing Mode 6

A 32-bit constant, formed by right-rotating a

ARM

Assembler S Updates |Action
ove Mov{cond} {8} Rd, <oprndzs NZC |Rd=<0pmdz
NOT W |cond}{s} Rd, <oprndzs NZ C |Rd:=0iFFFFFFFF EOR <Opmd2>

SPSRto register
CPSR 1o register
Iegister 1o SPSR
1eqister fo CPSR
immediate to SPSR flags
immediate to CPSR flags

}
}
MRs{cond) Rd, SPER

MRS | cond} cl, CPSR

MeR{cond) spse{field), mm
MeR{cond) CPsR(field],
MeR{cond) SPsP £, #32 Bit Imed

} CraR

R
5
C
5
MeR{cond] CPR £, #32 Bit Immed

-1:1-1:1

Rd= 5PSR
Rd=CPSR
SPSR:=Rm
CPSR:=Rm
SPSR:=£32 Bit Immed
CPSR:=#32 Bit Immed

Jurithmetic
Add aDD{cond}{s} Rd, Rn, <Oprndzs N Z C V |[Rd=Rn+=0pmd2>
with carry aDC{cond}{s} Rd, Rn, <Oprnd2s N Z C V |Rd=Rn+ <0pmd2=>+ Carmry
Subtract sue{cond}{s} Rd, Rn, <Cprnd2s N Z C V [Rd=Rn-<0Oprnd2=>
with carry sBC{cond}{s} Rd, Rn, =<Oprnd2s N Z C V |Rd=Rn-<=0prd2> - NOT(Carry)
reverse subtract ReB{cond}{s} Rd, Rn, <Cprnd2s N Z C V [Rd=<Oprnd2> - Rn
reverse subtract with carry| Rec{cond} {8} Rd, Rn, <Oprndzs N Z C V |[Rd=<Oprnd2> - Rn - NOT{Carry)
Negate
Multiply MUL{cond}{s} Rd, Rm, RS N Z Rd:=Rm *Rs
accumulate MLA{cond}{s} Rd, Rm, RS, Rn N Z Rd:=(Rm * Rs) + Rn
unsigned long UMULL {cond}{s} RdHi, RdLo, Rm, Rs N Z RdHi:= (Rm*Rs)[63:32]
RdLo:= (Rm*Rs)[31:0]
unsigned accumulate long | UMLAL {cond} {s} RdHi, RdLo, Rm, Rs N Z RdLo:=(Rm*Rs)+RdLo
RdHI:=(Rm"Rs)+RdHi+
CarryFrom{{Rm*Rs)[31:0]+RdLo})
signed long SMULL{cond}{s} RdH1, RdLo, Rm, RS N Z RdHi:= signed(Rm*Rs)[63:32]
RdLo:= signed(Rm*Rs)[31:0]
signed accumulate long | sMLAL{cond}{s} rdHi, RdLo, Rm, Rs N Z RdHi:=signed({Rm*Rs)+RdHi+
CarryFrom{{Rm*Rs)[31:0]+RdLo})
Compare cMP{cond} Rd, <Oprnd2: N Z C V |CPSR flags:= Rn - <Opmd2>
negative CMN{cond} Rd, <Oprndzs N Z C V |CPSRflags:=Rn+<Opmd2>
| ogical
Test TST{cond} Rn, <Oprndz: N Z C CPSR flags:= Rn AND =0pmd2=
Test equivalence TEQ{cond} Rn, <Oprnd2: N Z C CPSR flags:= Rn EOR =Oprnd2=
AND AND{cond}{s} Rd, Rn, <Cprndz= NZ C Rd:=Rn AND =0prnd2>
EOR EOR{cond}{s} Rd, Rn, <Cprnd2s N Z C Rd:= Rn EOR <Oprnd2>
ORR ORR{cond}{s} Rd, Rn, <Oprnd2s N Z C Rd:=Rn OR <0pmd2=>
Bit Clear BIc{cond}{s} Rd, Rn, <Oprnd2s NZ C Rd:=Rn AND NOT <Opmd2=
hift/Rotate
Assembler Action
Branch B{cond} label R15:= address

with link
and exchange Instruction set

BL{ccnd} label
BX{ccnd} Rn

R14:=R15, R15:= address
R15:=Rn, T bit:= Rn[0)]

Word LoR{cond} RA, <a_models
with user-mode privilege LpR{cond}T Rd, <a_modezs
Byte LDR{cond}E Rd, <a_models

with user-mode privilege LpR{cond}BT Rd, =a_modezs

signed LDR{cond}sE Rd, =a_mode3s
Halfword LDR{cond}H Rd, <a_models

signed LpR{cond}sH Rd, =a_modeis
Multiple

Block data operations

and rastore CPSR
User registars

LDM{cond}<a moded>
LoM{cond}<a_modeds

Increment Before LDM{cond}IE RA{!}, =regs={"}
Increment After LDM{cond}IA RA{!}, =regs={"}
Decrement Before LDoM{cond}DB RA{!}, <regs={"}
Decrement After LDM{cond}DA RA{!}, <regs={"}

Stack operations LoM{cond}<a_modeds RA{!}, <registerss

Rd{!}, <registers+pcs
Rd, <registerss"

Rd:= [address]

Rd:= [byte value from address]
Loads bits 0 to 7 and sets bits 8-31t0 0

Rd:= [signed byte value from address]
Loads bits 0 to 7 and sets bits 8-31to bit 7

Rd:= [halfword value from address]
Loads bits 0 to 15 and sets bits 16-31 o 0

Rd:= [signed halfword value from address]
Loads bits 0'to 15 and sets bits 16-31 to bit 15

Stack manipulation (pop)

ARM

Word
with user-mode privilege
Byte
with user-mode privilege
Halfword
Multiple
Block data operations
Increment Before
Increment After
Decrement Before
Decrement After
Stack operations
User registers

{
{
{
STM{
{
{

2TM{cond}IB RA{!},
=TM{cond}Ia RA{!},
sTM{cond}DB RA{!},
cond}Da RA{!},
8TM{cond}<a_modess
STM{cond}<a_modess

sTR{cond} Rd, =a_models

STRT{cond} Rd, <a modezs
sTRB{cond} Rd, =a_models
STRBT{ccnd} Rd, <a_modez»
STR{cond}H Rd, <a_mode3s

<reglsters={"}
<registerss{"}
<reglsters>{"}
<reglsters>{"}
Rd{!}, =regss
Rd{!}, eregs>”

[addrass]= Rd
[address]:= byte value from Rd

[address]:= halfword value from Rd

Stack manipulation {push)

Word
Byte

2Wp{cond} Rd, Rm,
eWp{cond}E Rd, REm, [Rn]

[Rn]

Data operations

Waove to ARM reg from coproc
Wove to coproc from ARM reg
Load

Store

{
{
MCR{
{
{

coP{cond}
MRC{ cond}

LDC{cond}
sTC{cond}

P<CpHums,
P<CpHums,
P<CpHums,
P<CpHums,
P<CpHums,

<opls, CRd, CRn, CRm, <opZ:>
<opls, Rd, CRn, CRm, <0p2s>
<opls, Rd, CRn, CRm, <0p2s>
CRd, <a_modess
CRA, <a_modess

SWI #24_Bit value

ARM

Addressing Mode 1

Immediate offset
Register offset
Scaled register offset

Pre-indexed offset
Immediate
Reqgister
Scaled register

Post-indexed offset
Immediate
Register
Scaled register

[Rn, #+/-12 Bit offset]

[Rn, +/-Em]

[Rn, +/-Rm, LSL #shift imm]
[Rn, +/-Rm, LSR #shift imm]
[En, +/-Em, ASR #shift imm]
[Rn, +/-Rm, ROR #shift imm]
[Rn, +/-Em, REX]

[Rn, #+/-12_Bit Offset]!
[Rn, +/-Rm]!

[kRn, +/-Rm, LSL #shift imm]!
[Rn, +/-Em, LSR #shift imm] !
[kRn, +/-Rm, ASR #shift imm]!
[Rn, +/-Em, ROR #shift imm] !
[Rn, +/-Em, REX]!

[Rn], #+/-12 Bit Offset
[Rn]l, +/-Rm

[Rn]l, +/-Rm, LSL #shift imm
[Rn], +/-Rm, LSR #shift imm
[Rn], +/-Rm, ASR #shift imm
[Rn], +/-Rm, RCR #shift imm
[Rn, +/-Em, REX]

ARM

Addressing Mode 2

Immediate offset
Register offset
Scaled register offset

Post-indexed offset
Immediate
Register
Scaled ragister

Rn, #+/-12 Bit Offset]

+/ -Rim]

+/-Bm, LSL #shift imm]

+/-Bm, LSE #shift imm]
]
]

o
=27

=
=

+/-Rm, ASR #shift imm
+/-Bm, ROR #shift imm
+/-Rm, REX]

aa aa
=} =}

)
=

)
2

#+/-12 Bit Offset
+/-Rm B B

+/-Rm, LSL #shift imm
+/-Rm, LSR #shift imm
+/-Rm, ASR #shift imm
Rnl, +/-Rm, ROR #shift imm
Rn, +/-REm, REX]

o
22

o
= =
=

ARM

Addressing Mode 3 - Signed Byte and Halfword Data Transfer

Immediate offset
Pre-indexed
Post-indexed

Register
Pre-indexed
Post-indexed

[Rn, #+/-8_Bit Offset]

[Rn, #+/-8_Bit_offset]!
[Rn]l, #+/-8_Blt Offset
[Rn, +/-Em]

[En, +/-Rm]!

[En], +/-Em

Addressing Mode 6 - Coprocessor Data Transfer

Immediate offset
Pre-indexed
Post-indexed

[Rn, #+/-(8_Bit Offset+4]]
[Rn, #+/-(8_Blt Offset+4)]!
[En], #+/-(8 Bit Offset+4)

Oprnd2

Immediate value #32_pit_Immed
Logical shift left Em LEL #5_Bit_Immed
Logical shift right Rm LSR #5_Bit_Immed
Anthmetic shift nght Em ASR #5_Bit_Immed
Rotate right Rm ROR A5_Pit_Immed

Register Em
Logical shift left Rm LSL Rs
Logical shift right Rn LER Rs
Arithmetic shift right Rm ASR Rs
Rotate right Em ROF. Rs
Rotate right extended Em_ ERX

~ARM

B_ranch and Exchange (BX)

This instruction is only executed if the condition is true. The varicus conditions are
defined in 2 Table 4-2: Condition code summary on page 4-5.

This instruction performs a branch by copying the contents of a general register, Rn,
into the program counter, PC. The branch causes a pipeline flush and refill from the
address specified by Rn. This instruction also permits the instruction set ta be
exchanged. When the instruction is executed, the value of Rn[0] determines whether
the instruction stream will be decoded as ARM or THUMB instructions.

31 28 27 24 23 20 19

16 15 12 11 8 7 43 0

ICond |ooo1|oo1o|111

1|1111|1111|0001| Rn I

I |

—

If bit 0 of Rn = 1, subsequent instructions decaded as THUMB instructions
If bit 0 of Rn = 0, subsequent instructions decoded as ARM instructions

Condition Field

[
Operand register

ARM

ADR RO,
BX RO

CODEl6
Into_THUMB

ADR RS,

BX RB

AT IGN
CODE32
Back to ARM

Inte THUMBE + 1

Baclk to ARM

; Generate branch target address
; and set bit 0 high - hence

; arrive in THUME =state.

; Branch and change to THUMB
tate.

semble subsequent code as

; THUME instructicns

aligned ; addr
; 1s low and so change back to ARM

; Branch and change back to AREM
; state.

; Word align
mble subsequent code as ARM
; instructions

ARM

4.4 Branch and Branch with Link (B, BL)

The instructicn is only executed if the condition is true. The various conditions are
defined DTable 4-2: Condition code summary on page 4-5. The instruction encoding
is shown in 2Figure 4-3: Branch instructions, below.

| 28 27 25 24 2 0
Cond 101 L offset
I
Link bit

0 = Branch
1 = Branch with Link

Condition field

Figure 4-3: Branch instructions

Branch instructions contain a signed 2's complement 24 bit offset. This is shifted left
two bits, sign extended to 32 bits, and added to the PC. The instruction can therefore
specify a branch of +/- 32Mbytes. The branch offset must take account of the prefetch
operation, which causes the PC to be 2 words (8 bytes) ahead of the current

instruction.

Branches beyond +/- 32Mbytes must use an offset or absclute destination which has
been previously loaded into a register. In this case the PC should be manually saved
in R14 if a Branch with Link type operation is required.

ARM

here BARL here ; aszembles to OXEAFFFFFE (note effect of

: PC offset).

B there ; Blways condition used as default.

CMP R1,#0 ; Compare R1 with zero and branch to fred
; 1f Rl was zero, otherwise continue

BEQ fred ; contlnue to next instructlon.

BL sub+ROM ; Call subroutine at computed address.

EDDS R1,#1 ; Add 1 to register 1, setting CPSR flags
; on the result then call subroutine if

BLCC sub ; the C flag is clear, which will ke the
; case unless R1 held 0xFFFFFFFF.

| Cond | 00 |I| OpCode

S | Rn | Rd | Operand 2

I L

L Destination register
1st operand register

Set condition codes
@ = da nof alter condon codes.

1= set candbion coddes
Operation Code
0000 = Al

Immediate Operand
11 0= operand 2 b a regeder .5

| Shift | Rm I—

2nd operand registar

shift applied lo Rm

1= cparamd 2 B anImmediats vale
P

| Unsigned 8 bitimmadiate value
shift applied to Imm

| Rotate

Condition field

Assembler

Mnemeonic OpCode Action

AND 0000 operand1 AND operand2

EOR 0001 operand1 EOR operand2

SUB 0010 operand? - operand2

RSB 0011 operand? - operand1

ADD 0100 operand + operand2

ADC 0101 operand 1 + operandZ + carry

SBC 0110 operand? - operand2 + carry - 1

RSC 0111 operand? - operand? + carry - 1

TST 1000 as AND, but result is not written

TEQ 1001 as EOR, but result is not written

CMP 1010 as SUB, but result is not written

CMN 1011 as ADD, but result is not written

ORR 1100 operand1 OR operand2

Moy 1101 operand?2 (operand is ignored)

BIC 1110 operand1 AND NOT operand2 (Bit clear)

MYN 1111 NOT operand2 (operand1 is ignored)
11 76 5 4 11 § 76 5 4

— L
Shift type

00 = logical ek
01 = logical right
10 = arithmetic right
11 = rolatzright

Shift amount
& bit unsigned intager

Rs 0 1

T L
Shift type

00 =|ogizal left

01 =logizal right
10 = arithmefic right
11 =rotate fight

Shift register
Shift amount specified in
botlorn byte of Rs

31 27 26

contents of Rm

carry out /
<—//

-
—

value of operand 2

00000

Figure 4-6: Logical shift left

54 0

contents of Rm

\\4

0O00O0CO0

value of operand 2

Figure 4-7: Logical shift right

5 4 0

contents of Rm

S eanyour
\\—j‘

value of operand 2

Figure 4-8: Arithmetic shift right

contents of Rm

value of operand 2

Figure 4-9: Rotate right

N

on

LSL by 32 has result zero, carry out equal to bit 0 of Rm.

LSL by more than 32 has result zero, carry out zero.

LSR by 32 has result zero, carry out equal to bit 31 of Rm.

LSR by more than 32 has result zero, carry out zero.

ASR by 32 or more has result filled with and carry out equal to bit 31 of Rm.
ROR by 32 has result equal to Rm, carry out equal to bit 31 of Rm.

ROR by nwhere n is greater than 32 will give the same result and carry out
as ROR by n-32; therefore repeatedly subtract 32 from n until the amount is
in the range 1 to 32 and see above.

The form of the shift field which might be expected to give ROR #0 is used to encode
a special function of the barrel shifter, rotate right extended (RRX). This is a rotate right
by one bit position of the 33 bit quantity formed by appending the CPSR C flag to the
most significant end of the contents of Rm as shown in ZFigure 4-10: Rotate right
extended.

contents of Rm

L

value of operand 2

ADDEQ R2,R4,RE ; If the I flag is set make R2:=R4+RG

TEQS

SUB

MOV
MOVS

R4, #3 ; test R4 for equality with 3.

; (The 8 is in fact redundant as the

; assembler inserte it automatically.)
R4,R5,R7,L5R R2; Logical right shift R7 by the number in

; the bottom byte of R2, subtract result
; from RE5, and put the answer into R4.
PC,R14 : Return from subroutine.
PC,R14 ; Return from exception and restore CPSR
i from SPER mode.

PSR

MRS (transfer PSR contents to a register)

31 2 23 22 16 15 12 1 0
Cond Q0010 E 001111 Rd Q00000000000
- I_li Destination register
Source PSR
0=CPSR

1=8PSR_=current mode>
Condition field

MSR (transfer register contents to PSR)

31 28 27 23 2 N 12 N 4 3 0
Cond 00010 R, 1010011111 00000000 Rm
L e
L Source register

Destination PSR
0=CPSR

1=SPSR_<curent mode>
Condition field

PSR

MSR (transfer register contents or immdiate value to PSR flag bits only)

31 28 27 2322 7 12 1 0
Cond oopr] 10|Ry 1010001111 Source operand
|__| | |
Destination PSR

0=CPSR
1=8PSR_=<current moda>

Immediate Operand
O=source oparand is a registar
11 4 3 0

00000000 Rm —

I_'_I

Source registar
1=source operand is an immediate valua
a 7 i]

11

Rotate Imm ||

| Ungignad 8 bit immeadiate value
shift applied to Imm

Condition field

PSR

The following sequence performs a mode change:

MES RO, CESE

BIC R0O,R0, #0x1F
CEE RO,R0,#new mode
MSE CPSE,RD

; Take a copy of the CPER.
; Clear the mode bits.

; Select new mode

; Write back the modified
; CPSR.

When the aim is simply to change the condition code flags in a PSR, a value can be
written directly to the flag bits without disturbing the control bits. The following

instruction sets the N,.Z,.C and V flags:

MSE CPSE_flg, #0xF0000000

; Set all the flags

; regardless of their

; previcus state (does not
; affect any control bits).

PSR

In User mode the instructions behave as follows:

MSR CPSR_all,Rl‘n ; CPSE[31:28] <- Rm[31:28]
MSR CPSR_flg,Rm ; CPSRE[31:28] =- Rm[31:28]
MSR C‘PSR_flg. #OxA0000000 ; CPSE[31:28] <- 0OxA

;iset N,C; clear Z,V)
MES Rd, CPSE ; Rd[31:0] <- CPSRI[31:0]

In privileged modes the instructions behave as follows:

MSR CPSR_all,Rm ; CPSE[31:0] =- Rm[31:0]
MSR CPSR_flg,Rm ; CPSRE[31:28] =- Rm[31:28]
MSR CPSR_flg,#DKSDDDDDDD ; CPSRE[31:28] <- 0Ox&5
;iset E,V; clear N,C)
MES Rd, CPSE ; RA[31:0] =- CPSRI[31:0]
MSR SPSR_all,Rm ;SPSR_qmode}[Bl:D]q— Em[31:0]
MSR SPSR_flg,Rm H SPSR_{mOdEb[31:28] <- BRm[31:28]
MSR SPSR_flg,#DKCDDDDDDD H SPSR_quder[31:2B] <- 0xC
;iset N,Z; clear C,V)
MES Rd, SESE ; RA[31:0] =- SPSR_qmode}[Bl:D]

4.7 Multiply and Multiply-Accumulate (MUL, MLA)

The instruction is only executed if the condition is true. The various conditions are
defined in 2Table 4-2: Condition code summary on page 4-5. The instruction encoding
is shown in ZFigure 4-12: Multiply instructions

The multiply and multiply-accumulate instructions use an 8 bit Booth's algorithm to
perform integer multiplication.

31 28 27 22 21 20 19 16 15 12 11 8 7 4 3 0
Cond -|'-C' 0000 0QAals Rd Rn Rs 1001 Rm

| I 1 11 |
LE Operand registers

Destination register

Set condition code
0 = do not alter condition codes
1= sat condition codes

Accumulate
0 = multiply onky
1 = multiply and accumulate

Condition Field

Multiply Long and Multiply-Accumulate Long (MULL,MLAL)

31 28 27 23 22 21 20 19

16 15 12 11

I Cond IC

1| I I I RdHi I RdlLo I

8 7 4 3 0
Rs

IS

|100 1|
L L |

[L Operand registers

Source destination registers
Set condition code

0 =do not alter condition codes
1 =set condition codes

Accumulate

0 = multiply only
1 = multiply and accumulate

Unsigned
0 ="unsigned
1 =signad

Condition Field

UMULL
UMLALS

R1,R4,R2,R3
R1,R5,R2,R3

; R4d,R1:=RZ2*R3
; R5,R1:=R2*R3+RE5,R1 alsc setting
; condition codes

Single Data Transfer (LDR, STR)

31 28 27 26 2

| Cond |0

Offset |

[E—

Il |
r

Source/Destination register
Base register
Load/Store bit

0= Store o memery
1 = Load from memory
Write-back bit
0 = no wrile-back
1 = write address into bass

Byte/Word bit
[= tramsfer word v
1 = transfer byt quanity

Up/Down bit
0 = down; sublract oflset from base
1 = upy acH offset to bass:

PreJPosl |ndex|ng bit

offset der Ianskr
| ple nddbe\ bafore franskr
| liate offset

1 D= olfsetis an immediate vl

| Immediate offset

L J
I
Unsigned 12 bit immadiate offest

1 - alfset is & wagisler

1 [

| Shift

. . Offset register
shift applied to Rm

Condition field

Halfword and Signed Data Transfer
(LDRH/STRH/LDRSB/LDRSH)

31 28 27 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 o]

I Cond IO 0 C-IF‘IUIOI'.-’-.-'ILI Rn I Rd IO o0 o1 ISIHI1 I Rm I
L 1 | T S I Iy | 11 1
Offset register

SH

00 = SWP instruction

01 = Unsigned halfwords

10 = Signed byte

11 = Signed halfwords
L Source/Destination
register

Base register

Load/Store
0 = store to memary
1 = load from memory
Write-back
no write-back
1 =write address into base

Up/Down
0 = down: subtract offset from

1 = up: add offset o base

Pre/Post indexing
0 = post: add/subtract offset
after transfar
1 = pre; add/subtract offset
before transfer

Condition field

Halfword and Signed Data Transfer
(LDRH/STRH/LDRSB/LDRSH)

31 28 27 25 24 23 22 21 20 19 16 15 12 11 B 7 8]

6 5 4 3
I Cond IC' oo I P I L_JI 1 IJ I L I Rn I R I Offset I 1 ISI HI 1 I Offset I
| | -~ [— | 1

L T 1L
Immediate Offset

(Low nibble}

SH

00 = WP instruction

01 = Unsigned halfwords

10 = Signad byts

11 = Signed halfwords
L Immediate Offset

{High nikble)

————— Scurce/Destination
register

Base register

Load/Store

0 = store to memory

1 = load fram memaory
Write-back

0 = no write-back

1 = write address into basa

Up/Down
0 = down: subltract offsat from

base
1 = up: add offset to basa

Pre/Post indexing
0 = post: add/subtract offsat
after transfar
1 = pre: addfsubtract offset
before transfer

Condition field

Figure 4-17: Halfword and signed data transfer with immediate offset

Block Data Transfer (LDM, STM)

3 28 17

25 14 23 12 21 019

16 13

il

100 |P

a hw
Ulsw

L Rn

Register list

[—

Base register
Load/Store bit

0 = Slore o memory
1 = Lz from memiry

Write-back bit

0 = o write-back
1 = write acdress into basa

PSR & force user bit
0 = do not kead PSR o foree user mode
1 = load PER or fores user mode

Up/Down bit
0 = down; sublract oifsst from base
1 = up; add offset o base

Pre/Post indexing bit
(1 = post; add offset aller ransfer
1 = pre; add offsat before iransfer

Condition field

consider thetransfer of R1, R5and R7 in the case where Rn=0x1000 and
write back of the modified baseisrequired (W=1). 0 Figure4-19: Post-

increment addressing,

R1

0x100C 0x100C

0x1000 R1 0x1000

0x0FF4 0x0FF4
2

0x100C Rn —=- Ox100C
R7

0x1000 R1 0x1000

0x0FF4 0x0FF4
4

Pre-increment addressing,

0x100C 0x100C
R1
Rri —m 01000 0x1000
0x0FF4 0x0FF4
1 2
Ox100C Rn —» R7 Ox100C
R& 5
R1 R1
0x1000 0x1000
0x0FF4 0x0FF4
3 4
0x100C 0x100C
R —a- 01000 01000
Ox0FF4 R1 Ox0OFF4
1 2
Ox100C Ox100C
01000 0x 1000
R7
RS RE
R1 Ox0FF4 Rn —= R1 Ox0FF4
3 4

Figure 4-22: Pre-decrement addressing

<LDM|STM>{cond | <FD|ED|FA |EA | IA | IB |DA|DB> Rnf !}, <Rlist>{"]

where:

{cond} twa character condition mnemanic. See 2Table 4-2: Condition code
summary on page 4-5.

Rn is an expression evaluating to a valid register number

=Rlist= is a list of registers and register ranges enclosed in {} (2.g. {R0,R2-
R7.R10}).

n if present requests write-back (W=1), otherwise W=0

" if present set 3 bit to load the CPSR along with the PC, or force

transfer of user bank when in privileged mode

LDMFD SP!, {RO,R1,R2} ;
STMIA RO, {RO-R15} ;
LDMFD SP!, {R15} ;
LDMFD SP!, {R15}" ;

STMFD R13,{RO-R14}* ;

I

Unstack 3 registers.

Save all registers.

R15 <- (5P),CPSR unchanged.

R15 <- (5P), CPSR <- SPSR mode
{allowed only in privileged modes) .
Save user mode regs on stack
{allowed only in privileged modes) .

These instructions may be used to save state on subroutine entry, and restore it
efficiently on return to the calling routine:

STMED SP!,{R0O-R3,R14} ;
; and R14 for returning.

T

BL somewhere :
LDMED SP!, {RO-R3,R15} ;

Save RO to R3 to use as workspace

This nested call will overwrite R14
restore workspace and return.

412 Single Data Swap (SWP)

g Y

31 28 27 2B 222120 19 ém 5O~ 12 11 § 7 4 3\ 0
Cond 00010 Bl 00 Rn Rd 0000 1001 Rm
(I I || | [

|— Source register
—— Destination register
Base register
Bytoemed hit

=g

wap word quanlity
1 = swap byte quantity

Condition field

SWP RO,R1, [R2] ; Load RO with the word addressed by R2, and
: store R1 at RZ.

SWER R2,R3, [R4] ; Load R2 with the byte addressed by R4, and
. store bits 0 to 7 of B3 at R4,

SWEEQ RO,RO, [R1] ; Conditionally swap the contents of the
; word addressed by R1 with RO,

Software Interrupt (SWI1)

3l 28 17 4 13 0

Cond 11 Comment field (ignored by Processor)

—— Condition field

The PC issaved in R14 svc upon entering the software
interrupt trap, with the PC adjusted to point to the word after
the SWI instruction. MOV S PC,R14 svc will return to the calling
program and restore the CPSR. Note that the link mechanism is
not re-entrant, so if the supervisor code wishesto use software
interruptswithin itself it must first save a copy of the return
addressand SPSR.

Software Interrupt (SWI)

SWI ReadC ; Get next character from read stream.
SWI Writel+7k” ; Output a “k” to the write stream.
SWINE 0 ; Conditionally call supervisor

: with O in comment field.

Software Interrupt (SWI1)

0x08 B Supervisor ; SWI entry point

EntryTable ; addresses of supervisor routines
DCD ZercoRtn
DCD ReadCREn
DCD WriteIRtn

Zero EQU 0O
ReadC EQU 2G5&
Writel EQU 51z

Supervisor
; SWI has routine required in bits B8-23 and data (if any) in

; bits 0-7.
; Assumes R13_svc points to a suitable stack

STMFD R13, {RO-R2,R14} ; Save work registers and return
; address.
LDR RO, [R14,#-4] ; Get SWI instructicn.
BIC RO,RO, #0xFFOO0000 ; Clear top 8 bits.
MOV R1,R0,LSR#8 ; Get routine offset.
ADR RZ,EntryTable ; Get start address of entry table.

LDR R15, [R2,R1,LSL#2] ; Branch to appropriate routine.
WriteIRtn ; Enter with character in RO bits 0-7.

LDOMFD R13, [RO-R2,R15}* ; Restore workspace and return,
; restoring processor mode and flags.

417 Undefined Instruction

The instruction is only executed if the condition is true. The various conditions are
defined in 2Table 4-2: Condition code summary on page 4-5. The instruction format
is shown in DFigure 4-28: Undefined instruction.

3l B BY i43 0

Cond 011 HOOOUOOO0CO0000NN 1000

15 1 13 12 M W 9 8 7 6 5 4 3 2 o

1 [l] op Offsets Rs Rd Move shifted register

2 [ofolal | 1] |:J| Rniofiset Rs Rd Addisubtract

3 ofoj]1 Op Rd ‘ Offset8 Flefave:‘cawpma'a_dd
fsublract immediale

4 oft1jofofo]o ap Rs Rd ALUoperations

5 (o|1|ofoflof1] Op |HI|HZ| RsHs Hiregister operations
fhranch exchange

6 [l A N | Rd PC-relative load

7 loftr|jo]1|{L|E Ro Rb Rd Loadstore with register
offset

8 of1jof1[H]S][1 Ro Rb Rd Load/slore sign-exfended
bytemalfword

g (o1 |1|B|L Offsets Rb Rd Load/store with immediate
offset

10 [1{0|jofo]fL Offsetd Rb Rd Load/store halfword

11 1T|lojo]1|L Rd Word8 SP-relative loadistore

12 (1[0 1[0]SP Rd Word8 Load address

13 1{oj1|{1fojojofo SWord? Add offsef fo stack poinfer

14 1T{oj1[{1|{L]1]O[R Rlist Pushipop regisfers

15 [1(1|0f0]fL Rb Rlist Multiple loadisfore

16 (11|01 Soffsets Conditional branch

7ol |oj 1| Values Software interrupt

8 [1(1]|1|0]0 Offsett Unconditional branch

19 1{1]1]1[H Offsel Long branch with link

15 4 13 12 1M ¢ 8 7 § 5 4 3 2 o
5.1 Format 1: move shifted register
15 14 13 12 11 10 g 8 7 [5 4 3 2 1 0
Djo 0 Op Offsets Rs Rd

E Destination register

Source register

Immediate value

move shifted register

oP THUME assembler ARM equivalent Action

0o L5L Rd, Rs, #Offsets MOWVS Rd, Rs, LSL #0ffzets | Shift Rs left by a 5-bit immediate value
and store the result in Rd.

01 LSR Rd, Rs, #0ffzets MOWVS Rd, Rs, LSR #0ffsets | Perform logical shift right on Rs by a 5-

bit immediate value and store the result
in Rd.

10 ASR Rd, Rs, #0ffssts MOVS Rd, Rs, ASR #Offsets | Perform arithmetic shift right on Rs by a
5-bit immediate value and store the
result in Rd.

LR R2, RS, #27 ; Logical shift right the contents
; of RS by 27 and store the result in R2.
+ Set condition codes on the result.

add/subtract

5.2 Format 2: add/subtract

15 14 13 12 " 10 9 & 7 6 5 4 3 2 1 0

ofgogqoqp 1 I 1O

=]

Rn/Offset3 Rs Rd

I E— 11

Il
[Destination register

Source register

Register!
Immediate value

Opcode
0- ADD
1-8UB

Immediate flag
0 - Register operand
1 - Immediate operand

add/subtract

I THUMB assembler ARM equivalent Action

0 ADD Rd, Rs, Rn ADDS Rd, Rs, Rn Add contents of Rn to contents of Rs. Place
resultin Rd.

1 ADD Rd, Rs, #Offset3 ADDS Rd, Rs, #0ffset3 | Add 3-bitimmediate value to contents of

Rs. Place resultin Rd.

0 SUB Rd, Rs, Rn SUBS Rd, Rs, Rn Subtract contents of Rn from contents of
Rs. Place resultin Rd.

1 SUB Rd, Rs, #0ffset3 SUBS Rd, Rs, #0ffset3 | Subtract 3-bit immediate value from
contents of Rs. Place result in Rd.

RO, R3, R4 ; RO := R3 + R4 and set condition codes on
;1 the result.

R&, R2, #8 ; R6 := R2 - 6 and set condition codes.

